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The problem of the plane diffraction of a nonstationary acoustic pres-
sure wave on a fixed infinite plate of a given width has been solved by
the method of successive approximations in [1]. 1n the general case,
under the action of an impinging pressure wave, the plate will start to
move which considerably complicates the problem. Below, a method de-
veloped by Fok [2] is used to obtain am exact solution by quadratures of
that problem, with account of the displacement of the plate; the pres-
sure within the liquid is determined and also the force exerted by the
liquid on the plate is calculated; the equation for the plate motion is
set up and its solution for an arbitrary instant of time is given; an
explicit relation between the shape of the impinging wave and the mode
of plate motion is established; the initial transient of the plate motion
within a time interval equal to twice the diffraction time is analyzed.

1. Assume that a plane wave having a pressure profile given by
z
P:P<'t-'c—)’ P(E)=0tor £SO

meets at a time t = 0 a thin rigid plate — 1/2 < x < 1/2, which is situ-

ated in the plane z = 0 (Fig. 1).
z

- 3 Under the impact of the wave the
N A .
/Qt \ :v{t) \P(t ) plate will start moving with a velocity
1

7 y 7 T v, = ¥(t) where V(0) = 0. We shall de-
'ﬁ‘\;g ,/ N 2;1/7 termine the pressure within the liquid
for t > 0. To that end one needs to
solve the equation

Fig. 1.
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for conditions

7} v

5%:*90& for z = (1.2)
z

p= p(z_—c—) for t<0 (1.3)

Here v(x, t) is the velocity in direction of :-axis within the plane
z=0, c and p, are the speed of sound and the density of stagnant liquid,
respectively.

Let us denote by p (x, z, t) and p+(x, z, t) the pressure for z< 0
and z > O respectively. The solution will be taken in the form [3,4]

By x4+
p_(z,z,)=P _z z _cﬁ‘i d v(E, v)dE
<t c >+ P(l + c ) n ot 5) v §_ ch(t —T)P— (z— E)P—7?
_ X4
P (@, 2, 1) = cnﬂ’% S df& v (€, %) df (1.4)

d s Vet——(z—)P—2
0i=tiﬂa Xp=x+V(—1)?—2

It can be readily verified that functioms p_ and P, éatisfy Equation
(1.1) and conditions (1.2) and (1.3).

We shall adopt dimensionless quantities

2z 2ct v P r
=T thh= "7 n= ") Pr= Py= poc
and we shall omit in the following the index 1.
The pressure drop along the plate is
t x+(£—’.
Ap=p.(z,0, ) — p(, 0, 1) =2 [ Pi)— 12 (u L“é_‘_);"_g_] 1.5)
oS A Vi—o—(E )P

Outside the plate for 2z = 0 the pressure is a continuous function

p-{z,0,80)=py(,0,8) for|z|>1 (1.6)

The function v(x, t) entering solution (1.4) is unknown off the plate.
We determine that function for |z| > 1 using relation (1.8). To that end
we solve the integral equation of the first type

t x+{l-T)
dv V%’%—nmt):o for |z|>1 (1.7)
0 x—(i-1) — )= (@—g)

2
3t

A similar equation was solved in [5].
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We shall apply to (1.7) the Laplace transform with respect to t and
denote by P*(X), V*(A) and P(x, A) the tramsforms of the functioms P(t),
¥(t) and v(z, t) respectively. Considering the ¢(—x, A) = ¢(x, A) we
obtain

oo 4
MK G 12— 2D+ Kot iz + BN @ @M aE 110 § Kothz —8 Dat |-
1 —1
—nP* () =0 @>1) @8)

Here Ko is the MacDonald function, For sake of convenience we shall
put
z—1 =1, Q1 M) =qi(z, 1)

and we shall omit the index 1; then Equation (1.8) assumes the form

(] 2
MUKz — 5D+ Kol iz + 2+ ED @@ a8+ V() § Kohlo+ 8D 2t} —
0 o

—aP*(A) =0 (> 0) (1.9)

The integral Equation (1.8) will be solved by the method of Fok [2].
We shall dwell here on the main outline of the solution. Applying to
(1.9) the Laplace transform with respect to x, we obtain

D2EY o= VimE(__ ®EH 0< Rek< Reh) (1.10
ey POk = §(g~k)vg—_§§ (O<Rek<Reh) (1.10)
Here
o]
@ (k, X)zge"kxq)(x, A) do
0
G (kW)= yr_—k[1§ oenet g, povo{ 1-cf ]
’ TYE+HNVER kb n JEE+hVE—R

In order that the solution of Equation (1.7) be bounded for x| > 1
and ¢t > 0 and integrable with regard to x in an arbitrary final interval,
it is necessary that the function ®(k, A) be regular for Re k> 0 and
that it tend toward zero for k » s, Then, the function G(k, A) is regular
in the strip 0 < Re k < Re A and tends toward zero for k - oo, Thus, this
function can be expressed by means of a Cauchy integral, the contour of
which can be so deformed that it almost fully embraces the strip of
regularity

' +ioo G(g },) ' A+ico G(g l}
G =—o0 S a %AS- gogddE=Gul W+ Galk b A

~ico —i00
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where
1 Teen 10 0@ ke™ P ()
Gtk M=—2—m_§w§_k dg:ﬁ}g CrHVET " kvE
v ;?»)OSO 1—e™® d (1.12)
SEE+HVE—"

is a regular function in a semi-plane Re k > 0 and function G,(k, A) is
regular in a semi-plane Re k < Re A,

Substituting (1.11) into (1.10) we obtain

[s ]

Ok M) | g ray= YVE—F S DE N
Vi+k TR E—HVE-R

dE—Gy(k, X))  (1.13)

In (1.13) the left part is regular in a semi-plane Re k > 0 and the
right part is regular in a semi-plane Re k < Re A and both parts tend
toward zero for k - =, Consequently, both parts of Equationm (1.13) equal

zero. Thus, considering (1.12) we obtain

S/ O (k, &) =—— VAT & Ca(k, W)=
S/

t

4
N 1 B _Pry V*{L)OSO 1 —e%

I = a =
Re N & 7 —
S, 142 YEE+HRHVE=R
by ,:::\ 5 _LOSO CEME (Rek>0) (1.14)
S AL )T REBVE—DR
Fig. 2.

Using the inverse Laplace transform, first
with respect to &k and then with respect to A

we obtain from (1.14) the velocity distribution for z= O in the vari-
ables =z, ¢

vz, )=V (&) in S, viz, )= P(t) 1inS,
1
v(z, ) =P@)+ L ___
& Vie— 3,

[P(t—1)—V (t—1)) _Jf.‘.‘“_'til_‘*‘l_dr in 8y (1.15)

and for the velocity in the remaining domains we obtain a recurrence
formula
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t S —
_ 1 Ve—|z|+1 .
v(z, t) =P (t) + e Pit—r) L= 71T gy (1.16)
nV]z]—1<m_1 T
1x]+1 t

— Svu_z) _“*L’”“dr_ S v(t—|z| t—1) _V_f:__midr)msn

T
lxi-1 Ix1+1

where the function v(x, t) under the integral is known if the solution
has been found in domains 51' Sz, PR Sn_ 1 (Fig. 2).

For the case of a fixed plate one should put in (1.16) V(t) = 0 and
in this case one may consider the problem solved. The pressure within
liquid is then calculated from (1.4) and the pressure drop across the
plate is determined from (1.5).

In the case of a moving plate one has to set up the equation of the
plate motion and having solved it one must determine the functiom V(t).
This will be the subject of the present discussion.

2. We shall now calculate the distribution of the pressure drop on the
plate for r » 0. For the initial period of time, depending upon the
values of x and ¢ three different cases are possible (Fig. 3).

The first case 0 < x < 1 — t, ¢t <1 (Pig. 3a)

B 10 V (t) dtdv
Apl—-Z[P(’)‘ noat SaS VUTT)-E—'(”—_Q’

The second case 1 — t <x <1, t<land t- 1< z2<1, t >1 (Fig.3b)

onmspo- 4 4[| sy

o+o Gy +0;

v

] =2[P()—V ()] (2.1)

Here '
4
_ 1 ey _ t—z4+1
f(z,z)_ﬁxglw(z )Vt 1:)]_.___.’1111

Introducing characteristic coordimates

n=t+u= Hh=t—=zx
one can show that

SS 1, v)dtdr SS [P (1) —V (1)] dEdv 2.2)

VVE—P—@—5¢ ) Vi—o—G—br

o
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Taking into account (2,2) one obtains after formidable calculations
(2.3)

=)]«)

The third case 0 < x< t -1, t »>1 (Fig. 3c). In analogy with the
previous case we obtain

t-(1-x)
Apy=2 (P(:)—V(z) — %6_‘9‘_ S [P (v)— V (7v)] [2 -[-al'csm(
0

=2 0= =12\ 10— @[ oot =2 =)o
o

19 t—(1+x)
-l S [P (t) — V('r)][ +arosm(1—z‘+“)].dr} (2.4)

0

We shall note that in (2.1), (2.3) and (2.4) the term 2P(t) expresses
the pressure on a stationary infinite plate, the term 2V(t) is the change
of the pressure drop resulting from the displacement of the plate and the
integral expressions account for the diffraction effects on the edges.

The force acting on a unit length of the plate is

1-!

F(z)—-ZSApdz—Z[S—Apldx—i- §Apgdx] for 0t <1
0
t~

~1

F(t)=ZSApdx-_2[S Apyds + S Ap.dx] tor 1<t <2

-1

Skipping the calculations we obtain in both cases
t
F(t)=4 (P(t)—V(t) — _;.S [P (x) =V (x)] dt‘) 02 (2.5)
0

For the time t > 2 we obtain accordingly

=4 ( P(t)—V (t) — _; S [P(ty—V(t)]dv— R, (1)) (inflt f Zn '+ 2) (2.6)
2n

Here



274 E.F, Afanas’ev

1 2n Es X3 T Eq
19 v(§. 1) dt v(E, ) — P(x) '
rt) =L 2 [Caz{ ax 26D (g _d
O =za L,S IOS §,V<t —r)*—(z—g)*+§ x§ndt§, ( —Pa—T 1O J
§1=$—(t—1'), 'rl=(t+2n—z)/2, §3=T+1—2n
Ba=zxz+(t—1), zg=1—"9n, Ei=1—zx4+t—7

is a known function if one has found the solution for t < 2n.

Assume that the plate is subjected only to hydrodynamic pressure.
Newton’s law in dimensionless variables will have the form

€ lpo
Vit)=—F(t ( =—-> .
O=75F@® €= 2.7
where h is the thickness and p is the demsity of the plate.

Using (2.5) and (2.6) and differentiating (2.7) once with regard to ¢,
we obtain

V7 (t) + eV’ (t)—%eV (t)=e[P' () — —;— P(t)] 0<t<2) (2.8)

V() 4 eV (1) — —;—eV () =¢ [P’ ® — % P(t)— R;(z)] (i"flt f 2"+ 2)

with the conditions
V(0)=0, vV’ (0) =eP (0)
V =V (2n), V' =¢[P (2n) —V (2n) — R, (2n)] for t=2n (2.9)

where ¥(2n) and Rn(zn) are known if the solution for ¢t < 2n has been
found.

Solving these equations we obtain (2.10)

t

V(t)=M+MSP(t—-r) [(xl — -%)e""——-(;w _ %)e)‘"]dt 0<t<2)
p .

t-2n
T T Vv _
Vo= gy P () () ) R e
[}

i-2n

— A,,el,(i—m)]_ e S Ry,t— ‘r)(l,le)““ — Age®) dT (
0

2n<t<2n+2)
A1 — Aa

n=1,2,...
where
Mo=—@F Ve +2) /2

Thus, the velocity of the plate is determined successively through the
time interval A ¢t = 2 in accordance with the Formulas (2.10).

Solving equations (2.8) for P(t) we obtain
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|4

PO=L[vw+ e+ D)V @+ 4 § @) «] o<t
[}]

N

2)
@.11)
1 1
PO =5 {7 0— v @n) + (o4 5) IV 0~V @] +8[Ry) — Ry 20) +

t

Y — nis2n t 2
.|._4_§”e 2[V(x)—2e R, (v)] d"} (n=1,2.~-- )

The expressions (2.11) can be utilized to determine in acoustic
approximation the profile of the impinging wave if experimental data
about the motion of the plate are known.

We consider now the plate in the initial time period 0 < ¢t < l/c.

Returning to dimensional variables in (2.10) we obtain

t

1 Ve F 2 —e— e
Vit)y=—\ P ys=rese—v-
04§ rumn [FTEo o (B4

Ve +2e+¢e+1 py ]
Vm exp (T ‘I:) dt (2.12)

Let us assume that the wave is short. Then its action can be treated
as an impulsive impact. Denoting by I the specific impulse of the wave
we obtain from (2.12)

Veer2e—e—1 xp( )+Vm+s+1 (2;,, )}

V=2 [ Vet + 2 Vet 2

We observe that V(t) = 0 at a time

dt*

€l ln(Ve2+26+a+1) , t.gl?’ % <0 (2.13)

Ve + 2e

It follows that in the case of a short lasting wave, there is a
moment during the passage of the diffraction wave from ome edge of the
plate to the other, when the velocity of the plate decreases to zero and
then it changes its sign. Obviously, at that time the plate will suffer
the largest displacement

1* —

t'
_ I (I PR Vi
max = \ ¥ (¥) dv= s [1 (VEF2e+e+1) ]

0

u

Let us assume that the wave has a steady profile P = Po. Then it
follows from (2.12)

Pyl -
Vmax = V () = ohee 11— (Vee+2e+e+ 1)tV e
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where t* is the same as in (2.13). It follows that in this case the
acceleration changes its sign at time .

From the above cases one can infer that also in the case of any other
arbitrary pressure profiles satisfying the condition P (t) < 0 the plate
velocity and acceleration change their sign during the time span ¢t ~ l/¢
This result can be related to the strong resistance of the liquid and of
the diffraction to the motion of the plate. One can expect that sub-
sequently the plate will gradually slow dowe its motion.
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